Alternative representations Lorentz factor
1 alternative representations
1.1 momentum
1.2 rapidity
1.3 series expansion (velocity)
alternative representations
there other ways write factor. above, velocity v used, related variables such momentum , rapidity may convenient.
momentum
solving previous relativistic momentum equation γ leads to:
γ
=
1
+
(
p
m
0
c
)
2
{\displaystyle \gamma ={\sqrt {1+\left({\frac {p}{m_{0}c}}\right)^{2}}}}
this form used, appear in maxwell–jüttner distribution.
rapidity
applying definition of rapidity following hyperbolic angle φ:
tanh
φ
=
β
{\displaystyle \tanh \varphi =\beta \,\!}
also leads γ (by use of hyperbolic identities):
γ
=
cosh
φ
=
1
1
−
tanh
2
φ
=
1
1
−
β
2
{\displaystyle \gamma =\cosh \varphi ={\frac {1}{\sqrt {1-\tanh ^{2}\varphi }}}={\frac {1}{\sqrt {1-\beta ^{2}}}}\,\!}
using property of lorentz transformation, can shown rapidity additive, useful property velocity not have. rapidity parameter forms one-parameter group, foundation physical models.
series expansion (velocity)
the lorentz factor has maclaurin series:
γ
=
1
1
−
β
2
=
∑
n
=
0
∞
β
2
n
∏
k
=
1
n
(
2
k
−
1
2
k
)
=
1
+
1
2
β
2
+
3
8
β
4
+
5
16
β
6
+
35
128
β
8
+
⋯
{\displaystyle {\begin{aligned}\gamma &={\dfrac {1}{\sqrt {1-\beta ^{2}}}}\\&=\sum _{n=0}^{\infty }\beta ^{2n}\prod _{k=1}^{n}\left({\dfrac {2k-1}{2k}}\right)\\&=1+{\tfrac {1}{2}}\beta ^{2}+{\tfrac {3}{8}}\beta ^{4}+{\tfrac {5}{16}}\beta ^{6}+{\tfrac {35}{128}}\beta ^{8}+\cdots \\\end{aligned}}}
which special case of binomial series.
the approximation γ ≈ 1 + /2 β may used calculate relativistic effects @ low speeds. holds within 1% error v < 0.4 c (v < 120,000 km/s), , within 0.1% error v < 0.22 c (v < 66,000 km/s).
the truncated versions of series allow physicists prove special relativity reduces newtonian mechanics @ low speeds. example, in special relativity, following 2 equations hold:
p
→
=
γ
m
v
→
{\displaystyle {\vec {p}}=\gamma m{\vec {v}}}
e
=
γ
m
c
2
{\displaystyle e=\gamma mc^{2}\,}
for γ ≈ 1 , γ ≈ 1 + /2 β, respectively, these reduce newtonian equivalents:
p
→
=
m
v
→
{\displaystyle {\vec {p}}=m{\vec {v}}}
e
=
m
c
2
+
1
2
m
v
2
{\displaystyle e=mc^{2}+{\tfrac {1}{2}}mv^{2}}
the lorentz factor equation can inverted yield:
β
=
1
−
1
γ
2
{\displaystyle \beta ={\sqrt {1-{\frac {1}{\gamma ^{2}}}}}}
this has asymptotic form of:
β
=
1
−
1
2
γ
−
2
−
1
8
γ
−
4
−
1
16
γ
−
6
−
5
128
γ
−
8
+
⋯
{\displaystyle \beta =1-{\tfrac {1}{2}}\gamma ^{-2}-{\tfrac {1}{8}}\gamma ^{-4}-{\tfrac {1}{16}}\gamma ^{-6}-{\tfrac {5}{128}}\gamma ^{-8}+\cdots }
the first 2 terms used calculate velocities large γ values. approximation β ≈ 1 - /2 γ holds within 1% tolerance γ > 2, , within 0.1% tolerance γ > 3.5.
Comments
Post a Comment