Generalizations Product rule
1 generalizations
1.1 product of more 2 factors
1.2 higher derivatives
1.3 higher partial derivatives
1.4 banach space
1.5 derivations in abstract algebra
1.6 vector functions
1.7 scalar fields
generalizations
a product of more 2 factors
the product rule can generalized products of more 2 factors. example, 3 factors have
d
(
u
v
w
)
d
x
=
d
u
d
x
v
w
+
u
d
v
d
x
w
+
u
v
d
w
d
x
{\displaystyle {\frac {d(uvw)}{dx}}={\frac {du}{dx}}vw+u{\frac {dv}{dx}}w+uv{\frac {dw}{dx}}}
.
for collection of functions
f
1
,
…
,
f
k
{\displaystyle f_{1},\dots ,f_{k}}
, have
d
d
x
[
∏
i
=
1
k
f
i
(
x
)
]
=
∑
i
=
1
k
(
d
d
x
f
i
(
x
)
∏
j
≠
i
f
j
(
x
)
)
=
(
∏
i
=
1
k
f
i
(
x
)
)
(
∑
i
=
1
k
f
i
′
(
x
)
f
i
(
x
)
)
.
{\displaystyle {\frac {d}{dx}}\left[\prod _{i=1}^{k}f_{i}(x)\right]=\sum _{i=1}^{k}\left({\frac {d}{dx}}f_{i}(x)\prod _{j\neq i}f_{j}(x)\right)=\left(\prod _{i=1}^{k}f_{i}(x)\right)\left(\sum _{i=1}^{k}{\frac {f _{i}(x)}{f_{i}(x)}}\right).}
higher derivatives
it can generalized general leibniz rule nth derivative of product of 2 factors, symbolically expanding according binomial theorem:
d
n
(
u
v
)
=
∑
k
=
0
n
(
n
k
)
⋅
d
(
n
−
k
)
(
u
)
⋅
d
(
k
)
(
v
)
.
{\displaystyle d^{n}(uv)=\sum _{k=0}^{n}{n \choose k}\cdot d^{(n-k)}(u)\cdot d^{(k)}(v).}
applied @ specific point x, above formula gives:
(
u
v
)
(
n
)
(
x
)
=
∑
k
=
0
n
(
n
k
)
⋅
u
(
n
−
k
)
(
x
)
⋅
v
(
k
)
(
x
)
.
{\displaystyle (uv)^{(n)}(x)=\sum _{k=0}^{n}{n \choose k}\cdot u^{(n-k)}(x)\cdot v^{(k)}(x).}
furthermore, nth derivative of arbitrary number of factors:
(
∏
i
=
1
k
f
i
)
(
n
)
=
∑
j
1
+
j
2
+
.
.
.
+
j
k
=
n
(
n
j
1
,
j
2
,
.
.
.
,
j
k
)
∏
i
=
1
k
f
i
(
j
i
)
.
{\displaystyle \left(\prod _{i=1}^{k}f_{i}\right)^{(n)}=\sum _{j_{1}+j_{2}+...+j_{k}=n}{n \choose j_{1},j_{2},...,j_{k}}\prod _{i=1}^{k}f_{i}^{(j_{i})}.}
higher partial derivatives
for partial derivatives, have
∂
n
∂
x
1
⋯
∂
x
n
(
u
v
)
=
∑
s
∂
|
s
|
u
∏
i
∈
s
∂
x
i
⋅
∂
n
−
|
s
|
v
∏
i
∉
s
∂
x
i
{\displaystyle {\partial ^{n} \over \partial x_{1}\,\cdots \,\partial x_{n}}(uv)=\sum _{s}{\partial ^{|s|}u \over \prod _{i\in s}\partial x_{i}}\cdot {\partial ^{n-|s|}v \over \prod _{i\not \in s}\partial x_{i}}}
where index s runs through whole list of 2 subsets of {1, ..., n}. example, when n = 3, then
∂
3
∂
x
1
∂
x
2
∂
x
3
(
u
v
)
=
u
⋅
∂
3
v
∂
x
1
∂
x
2
∂
x
3
+
∂
u
∂
x
1
⋅
∂
2
v
∂
x
2
∂
x
3
+
∂
u
∂
x
2
⋅
∂
2
v
∂
x
1
∂
x
3
+
∂
u
∂
x
3
⋅
∂
2
v
∂
x
1
∂
x
2
+
∂
2
u
∂
x
1
∂
x
2
⋅
∂
v
∂
x
3
+
∂
2
u
∂
x
1
∂
x
3
⋅
∂
v
∂
x
2
+
∂
2
u
∂
x
2
∂
x
3
⋅
∂
v
∂
x
1
+
∂
3
u
∂
x
1
∂
x
2
∂
x
3
⋅
v
.
{\displaystyle {\begin{aligned}&{}\quad {\partial ^{3} \over \partial x_{1}\,\partial x_{2}\,\partial x_{3}}(uv)\\\\&{}=u\cdot {\partial ^{3}v \over \partial x_{1}\,\partial x_{2}\,\partial x_{3}}+{\partial u \over \partial x_{1}}\cdot {\partial ^{2}v \over \partial x_{2}\,\partial x_{3}}+{\partial u \over \partial x_{2}}\cdot {\partial ^{2}v \over \partial x_{1}\,\partial x_{3}}+{\partial u \over \partial x_{3}}\cdot {\partial ^{2}v \over \partial x_{1}\,\partial x_{2}}\\\\&{}\qquad +{\partial ^{2}u \over \partial x_{1}\,\partial x_{2}}\cdot {\partial v \over \partial x_{3}}+{\partial ^{2}u \over \partial x_{1}\,\partial x_{3}}\cdot {\partial v \over \partial x_{2}}+{\partial ^{2}u \over \partial x_{2}\,\partial x_{3}}\cdot {\partial v \over \partial x_{1}}+{\partial ^{3}u \over \partial x_{1}\,\partial x_{2}\,\partial x_{3}}\cdot v.\end{aligned}}}
banach space
suppose x, y, , z banach spaces (which includes euclidean space) , b : x × y → z continuous bilinear operator. b differentiable, , derivative @ point (x,y) in x × y linear map d(x,y)b : x × y → z given by
(
d
(
x
,
y
)
b
)
(
u
,
v
)
=
b
(
u
,
y
)
+
b
(
x
,
v
)
∀
(
u
,
v
)
∈
x
×
y
.
{\displaystyle (d_{\left(x,y\right)}\,b)\left(u,v\right)=b\left(u,y\right)+b\left(x,v\right)\qquad \forall (u,v)\in x\times y.}
derivations in abstract algebra
in abstract algebra, product rule used define called derivation, not vice versa.
vector functions
the product rule extends scalar multiplication, dot products, , cross products of vector functions.
for scalar multiplication:
(
f
⋅
g
)
′
=
f
′
⋅
g
+
f
⋅
g
′
{\displaystyle (f\cdot {\mathbf {g}}) =f\; \cdot {\mathbf {g}}+f\cdot {\mathbf {g}}\; }
for dot products:
(
f
⋅
g
)
′
=
f
′
⋅
g
+
f
⋅
g
′
{\displaystyle ({\mathbf {f}}\cdot {\mathbf {g}}) ={\mathbf {f}}\; \cdot {\mathbf {g}}+{\mathbf {f}}\cdot {\mathbf {g}}\; }
for cross products:
(
f
×
g
)
′
=
f
′
×
g
+
f
×
g
′
{\displaystyle ({\mathbf {f}}\times {\mathbf {g}}) ={\mathbf {f}}\; \times {\mathbf {g}}+{\mathbf {f}}\times {\mathbf {g}}\; }
note: cross products not commutative, i.e.
(
f
×
g
)
′
≠
f
′
×
g
+
g
′
×
f
{\displaystyle (f\times g) \neq f \times g+g \times f}
, instead products anticommutative, can written
(
f
×
g
)
′
=
f
′
×
g
−
g
′
×
f
{\displaystyle (f\times g) =f \times g-g \times f}
scalar fields
for scalar fields concept of gradient analog of derivative:
∇
(
f
⋅
g
)
=
∇
f
⋅
g
+
f
⋅
∇
g
{\displaystyle \nabla (f\cdot g)=\nabla f\cdot g+f\cdot \nabla g}
Comments
Post a Comment