Definition Student's t-distribution




1 definition

1.1 probability density function
1.2 cumulative distribution function
1.3 special cases





definition
probability density function

student s t-distribution has probability density function given by







f
(
t
)
=



Γ
(



ν
+
1

2


)




ν
π



Γ
(


ν
2


)





(
1
+



t

2


ν


)







ν
+
1

2




,



{\displaystyle f(t)={\frac {\gamma ({\frac {\nu +1}{2}})}{{\sqrt {\nu \pi }}\,\gamma ({\frac {\nu }{2}})}}\left(1+{\frac {t^{2}}{\nu }}\right)^{\!-{\frac {\nu +1}{2}}},\!}



where



ν


{\displaystyle \nu }

number of degrees of freedom ,



Γ


{\displaystyle \gamma }

gamma function. may written as







f
(
t
)
=


1

2


ν




b

(


1
2


,


ν
2


)





(
1
+



t

2


ν


)







ν
+
1

2





,


{\displaystyle f(t)={\frac {1}{2{\sqrt {\nu }}\,\mathrm {b} ({\frac {1}{2}},{\frac {\nu }{2}})}}\left(1+{\frac {t^{2}}{\nu }}\right)^{\!-{\frac {\nu +1}{2}}}\!,}



where b beta function. in particular integer valued degrees of freedom



ν


{\displaystyle \nu }

have:


for



ν
>
1


{\displaystyle \nu >1}

even,










Γ
(



ν
+
1

2


)




ν
π



Γ
(


ν
2


)



=



(
ν

1
)
(
ν

3
)

5

3


2


ν


(
ν

2
)
(
ν

4
)

4

2







{\displaystyle {\frac {\gamma ({\frac {\nu +1}{2}})}{{\sqrt {\nu \pi }}\,\gamma ({\frac {\nu }{2}})}}={\frac {(\nu -1)(\nu -3)\cdots 5\cdot 3}{2{\sqrt {\nu }}(\nu -2)(\nu -4)\cdots 4\cdot 2\,}}\cdot }



for



ν
>
1


{\displaystyle \nu >1}

odd,










Γ
(



ν
+
1

2


)




ν
π



Γ
(


ν
2


)



=



(
ν

1
)
(
ν

3
)

4

2


π


ν


(
ν

2
)
(
ν

4
)

5

3








{\displaystyle {\frac {\gamma ({\frac {\nu +1}{2}})}{{\sqrt {\nu \pi }}\,\gamma ({\frac {\nu }{2}})}}={\frac {(\nu -1)(\nu -3)\cdots 4\cdot 2}{\pi {\sqrt {\nu }}(\nu -2)(\nu -4)\cdots 5\cdot 3\,}}\cdot \!}



the probability density function symmetric, , overall shape resembles bell shape of distributed variable mean 0 , variance 1, except bit lower , wider. number of degrees of freedom grows, t-distribution approaches normal distribution mean 0 , variance 1. reason




ν



{\displaystyle {\nu }}

known normality parameter .


the following images show density of t-distribution increasing values of



ν


{\displaystyle \nu }

. normal distribution shown blue line comparison. note t-distribution (red line) becomes closer normal distribution



ν


{\displaystyle \nu }

increases.



cumulative distribution function

the cumulative distribution function can written in terms of i, regularized incomplete beta function. t > 0,







f
(
t
)
=







t


f
(
u
)

d
u
=
1




1
2




i

x
(
t
)



(



ν
2



,



1
2



)

,


{\displaystyle f(t)=\int _{-\infty }^{t}f(u)\,du=1-{\tfrac {1}{2}}i_{x(t)}\left({\tfrac {\nu }{2}},{\tfrac {1}{2}}\right),}



where







x
(
t
)
=


ν


t

2


+
ν



.


{\displaystyle x(t)={\frac {\nu }{t^{2}+\nu }}.}



other values obtained symmetry. alternative formula, valid




t

2


<
ν


{\displaystyle t^{2}<\nu }

, is














t


f
(
u
)

d
u
=



1
2



+
t



Γ

(



1
2



(
ν
+
1
)
)





π
ν



Γ

(



ν
2



)










2



f

1



(



1
2



,



1
2



(
ν
+
1
)
;



3
2



;





t

2


ν



)

,


{\displaystyle \int _{-\infty }^{t}f(u)\,du={\tfrac {1}{2}}+t{\frac {\gamma \left({\tfrac {1}{2}}(\nu +1)\right)}{{\sqrt {\pi \nu }}\,\gamma \left({\tfrac {\nu }{2}}\right)}}\,{}_{2}f_{1}\left({\tfrac {1}{2}},{\tfrac {1}{2}}(\nu +1);{\tfrac {3}{2}};-{\tfrac {t^{2}}{\nu }}\right),}



where 2f1 particular case of hypergeometric function.


for information on inverse cumulative distribution function, see quantile function#student s t-distribution.


special cases

certain values of



ν


{\displaystyle \nu }

give simple form.







ν
=
1


{\displaystyle \nu =1}




distribution function:








f
(
t
)
=



1
2



+



1
π



arctan

(
t
)
.


{\displaystyle f(t)={\tfrac {1}{2}}+{\tfrac {1}{\pi }}\arctan(t).}






density function:








f
(
t
)
=


1

π
(
1
+

t

2


)



.


{\displaystyle f(t)={\frac {1}{\pi (1+t^{2})}}.}






see cauchy distribution






ν
=
2


{\displaystyle \nu =2}




distribution function:








f
(
t
)
=



1
2



+


t

2


2
+

t

2







.


{\displaystyle f(t)={\tfrac {1}{2}}+{\frac {t}{2{\sqrt {2+t^{2}}}}}.}






density function:








f
(
t
)
=


1


(
2
+

t

2


)



3
2





.


{\displaystyle f(t)={\frac {1}{\left(2+t^{2}\right)^{\frac {3}{2}}}}.}










ν
=
3


{\displaystyle \nu =3}




density function:








f
(
t
)
=



6


3




π


(
3
+

t

2


)


2





.


{\displaystyle f(t)={\frac {6{\sqrt {3}}}{\pi \left(3+t^{2}\right)^{2}}}.}










ν
=



{\displaystyle \nu =\infty }




density function:








f
(
t
)
=


1

2
π




e





t

2


2




.


{\displaystyle f(t)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {t^{2}}{2}}}.}






see normal distribution




^ john kruschke (2014), doing bayesian data analysis, academic press; 2 edition. isbn 0124058884
^ cite error: named reference jkb invoked never defined (see page).






Comments

Popular posts from this blog

United Kingdom List of armoured fighting vehicles by country

Fleet Cuban Revolutionary Armed Forces

Advert synopses Orson Welles Paul Masson adverts